If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.6t^2-20t=0
a = 1.6; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·1.6·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*1.6}=\frac{0}{3.2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*1.6}=\frac{40}{3.2} =12+1/2 $
| 2x+15+4x-3=180 | | 33=7x-23 | | -(8+2x)=-4x+6 | | 360-10x=-4-6x | | 8p+3-5p=-4p+p+14 | | 640=(45x+100) | | 7(x+7=28 | | 15k=105 | | 4(2h+8)=5(h+4) | | 7+-2p=13 | | -4m+6-6m=1/2(-20m+6) | | F(-12)=3(-2x+7) | | -15.6=-0.6g | | 5(n-5)+8=-21+5n | | -p+4=6 | | 90+2x-30+2x-15=180 | | 15+78+120+x=180 | | 5/8x+2.5=3.8x+1.5+1/4x | | 5(t+48)=5 | | 360+10x=-4-6x | | 7-3c=c-4(2+c) | | 75+2x+x=180 | | 8(r+9)+7r=0 | | 4x+24=(x+6) | | 21=r+5 | | -7-2y=30 | | X+3-18+x+3+90=180 | | 2x4-11x3-11x-9=0 | | 16t+2(2t+5)=14 | | |3x+24|=6x | | 3x^2=151 | | -6(-5h+1)=18h-6+15h-3h |